以 Fe₂O₃/SiO₂ 吸收劑高溫去除硫化氫及硫化羰之研究

高綾君,成功大學環境工程研究所碩士班研究生 黃瀞瑩,成功大學環境工程研究所碩士 張詠翔,成功大學環境工程研究所碩士班研究生 曾庭科,致遠管理學院環境資源學系助理教授 朱信,成功大學環境工程研究所教授

摘要

隨著世界人口的增加,石油及天然氣等能源短缺,導致油價不斷上漲,為了 因應多元化能源利用,未來在燃煤發電之使用將明顯的上升。煤炭氣化複循環發 電技術(IGCC)是以煤炭作為能源,降低污染物之釋放,以達到煤炭高效率、清潔 之使用,未來將是發電技術主流之一。現行商業運轉之大型煤炭氣化複循環發電 機組(IGCC)皆使用溼式商業化之除硫程序,但由於用水量大,使得系統熱效率降 低,為解決此問題以降低發電及環保成本,利用高溫乾式除硫方法將是未來的趨 勢。

關鍵字:除硫、硫化氫、硫化羰、金屬氧化物、吸收劑

一、前言

IGCC (Integrated Gasification Combined Cycle)技術應用於複循環發電機組中,可使熱效率提高至41~43%,而於環保方面可使 NO_X 降低 33%、SO_X 減少 75%、PM₁₀ 減少 50%、汞去除率 90%及水 30%【GE Energy, 2006】,無論從技術、 能源及環保三方面來看,已逐漸成為最可行之燃煤發電技術。

IGCC發電系統中,煤炭在高壓高溫之氣化爐中轉化為合成氣(Syngas),所 生成的粗煤氣經去除污染物後,再送至渦輪機組發電。由氣化爐出來的合成氣含 有一定量的雜質,主要有粉塵、硫化氫、硫化羰、焦油與氯化氫等,不但會腐蝕 設備,更會使整體發電之淨熱效率減少。

本研究選用負載型金屬氧化物吸收劑主要目的不僅是為了防止吸收劑機械 強度退化,也可藉其載體之高表面積來增加氣固接觸的機會,使活性金屬充分被 利用。

二、研究方法與實驗器材

1、研究架構

本研究係利用臨濕含浸法自行製備氧化鐵吸收劑,以去除 IGCC 發電程序所 產生的硫化氫及硫化羰,實驗將探討不同載體之氧化鐵吸收劑在高溫下同時去除 硫化氫與碳化羰可行性的評估,並觀察脫硫-再生循環對吸收劑脫硫效率之影 響;以及改變實驗之操作因素對吸收容量之影響;更進一步以各種輔助實驗來探 討製備吸收劑的特性及吸收劑反應前後之變化情形。並且找出吸收劑高溫去除硫 化氫及硫化羰之最佳動力模式。主要之研究流程如 Fig.1 所示。

1

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系

Fig.1 實驗流程圖

2、實驗系統裝置

本實驗裝置如 Fig. 2 所示。其主要設備分為下列幾個部份:廢氣模擬系統、反應爐體系統、氣體採樣分析系統等三大部份。

Fig. 2 吸收劑轉化實驗設備圖

三、吸收劑

本實驗所使用之吸收劑為自行製備之氧化鐵吸收劑,是採用 Fe(NO₃)₃·9H₂O 試劑加入去離子水成為 Fe(NO₃)₃之溶液,分別採用 SiO₂、ZrO₂、γ-Al₂O₃ 為載體。

為避免吸收劑床發生溝流(channeling)現象及和避免吸收劑孔洞產生擴散影響,為 了使吸收床溫度分佈均勻,利用不鏽鋼研砵將載體磨碎,倒入 30 mesh、50 mesh 之篩網內,篩選出粒徑為 30~50 mesh 大小之載體,以臨濕含浸法製備吸收劑。

四、結果與討論

各吸收劑之脫硫效果皆以吸收劑利用率(sorbent utilization)表示,其表示式如 (4-1)式所示:

$$\tau(\%) = \frac{t}{t^*} \times 100\% \tag{4-1}$$

式中, τ : sorbent utilization(%)

t : 貫穿時間(min)

t*:理論貫穿時間(min)

於本研究中將貫穿時間定義為硫化氫出口濃度大於 100 ppm 之時間點(根據 固定污染源排放標準第 14 條硫化氫逕排大氣:100 ppm,且一般貫穿濃度多選擇 進氣濃度之 1%),而理論貫穿時間計算如下(4-2)式所示:

$$t^* = \frac{\left(\frac{WX}{M}\right)A}{F} \tag{4-2}$$

式中, F:進氣硫化氫之莫耳流率(mol/min) M:活性金屬之分子量(g/mol) X:活性金屬在吸收劑中之比例(g/g) W:吸收劑填充量(g) A:每莫耳活性金屬所吸收之硫化氫莫耳數(mol/mol)

由反應式(4-3)及(4-4)式得知1莫耳Fe₂O₃單獨去除硫化氫及單獨去除硫化羰 時分別可吸收2莫耳H₂S及2莫耳的硫化羰。

$$Fe_2O_3 + 2H_2S + H_2 \rightarrow 2FeS + 3H_2O \tag{4-3}$$

$$Fe_2O_3 + 2COS + H_2 \rightarrow 2FeS + 2CO_2 + H_2O \tag{4-4}$$

1、不同氧化物吸收劑脫硫性能比較

為測試不同活性金屬吸收劑對脫硫效率之影響,以臨濕含浸法製備 10 wt% Fe₂O₃及 ZnO 之載體型吸收劑,鍛燒時間為 8 小時,鍛燒溫度定 700℃,於固定 條件下進行脫硫測試。進行吸收劑脫硫測試之前,為了解高溫鍛燒過程是否會造 成吸收劑活性金屬的揮發,將經 700℃鍛燒 8 小時之氧化鐵及氧化鋅吸收劑經王 水消化定量後,以 ICP-OES 測其鐵及鋅之含量,所得結果如 Table 1 所示。其中 各金屬元素回收率計算法為:

回收率(%) =
$$\frac{\text{bICP}$$
測得之金屬含量(mg/kg-sorbent)}{含浸之金屬量(mg/kg-sorbent)} \times 100\% (4-5)

由表中可以得知鐵之回收率為98.9%,鋅之回收率為81.3%,表示吸收劑中的鐵並不會因為高溫鍛燒過程而揮發,而含浸鋅之載體型吸收劑則會因為高溫鍛

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系

燒而造成揮發。

Sorbent	Measured metal content (mg/kg-sorbent)	Recovery (%)
10% Fe ₂ O ₃ /SiO ₂	6.92×10^4	98.9
10% ZnO/SiO ₂	6.53×10 ⁴	81.3

Table1 Inductively coupled plasma (ICP) analysis and recovery for various metal oxide sorbents

Prepared Fe content : 7×10^4 mg/kg-sorbent ;

Prepared Zn content : 8.03×10^4 mg/kg-sorbent

Fig. 3 為 Fe₂O₃ 及 ZnO 負載在 SiO₂ 上同時去除硫化氫及硫化羰之貫穿曲線, 由圖中我們發現氧化鐵吸收劑同時去除硫化氫及硫化羰之效果相當顯著,貫穿前 硫化氫出口濃度皆可低於 5 ppm,同時吸收劑之利用率為 100%。由圖中發現氧 化鋅吸收劑利用率較差,這可能是因為鍛燒溫度高達 700℃導致鋅揮發,因而使 吸收劑中有效鋅含量減少。Sasaoka【1993】等人指出鋅在 600℃以上被還原的情 形,氧化鋅於 650℃以上時會被還原為鋅金屬而揮發。由本實驗室之前的研究經 驗得知含有氧化鐵之吸收劑對於硫化氫有較佳的脫硫效率且於上述之實驗得知 氧化鐵可有效地同時去除硫化氫及硫化羰。因此本研究選擇以載體負載氧化鐵作 為後續研究之吸收劑。

Fig. 3 Breakthrough curves for H₂S and COS removal at 500°C using Fe₂O₃/SiO₂ and ZnO/SiO₂ (Inlet H₂S = 10,000 ppm, COS = 2,000 ppm, CO = 30%, H₂ = 20%, N₂ balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹)

2、吸收劑再生之程溫脫附測試

為了解 10% Fe₂O₃/SiO₂ 吸收劑再生時之 SO₂ 脫附現象,利用 TG/DTA 進行 程溫脫附(Temperature Programming Desorption, TPD)再生實驗。將再生氣體(1% O₂/N₂) 通入 TG/DTA 中,升溫速率為 10°C/min,再將尾氣與 GC 連結,觀測 SO₂ 之濃度,其結果如 Fig.4 所示,由圖中我們可以發現脫硫後之 10% Fe₂O₃/SiO₂ 吸 收劑在溫度約 200°C 時開始有 SO₂ 的脫附,當溫度升至 370°C 時 SO₂ 之脫附量達 最大值,之後就逐漸下降。

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系

為了解吸收劑脫附時反應由何種物質所主宰,在本研究利用 FeS、FeSO4以及 FeS2的標準品於相同條件下進行脫附測試,其結果如 Fig.4 所示。將標準品所得之脱附位置與脫硫後之 10% Fe2O3/SiO2吸收劑比較,結果顯示在溫度約 200℃及 370℃所產生的 SO2 脫附峰應為 FeS 產生,但可能由於熱傳導因素及吸收劑內雜質之影響導致其溫度點有提前的趨勢。

Fig.4 Temperature programming desorption (TPD) test for sulfurated 10% Fe₂O₃/SiO₂ and iron compounds standards

3、Fe₂O₃/SiO₂吸收劑脱硫再生循環測試

本研究為了解自製之 10% Fe₂O₃/SiO₂ 吸收劑在長期操作下活性衰退的情形,在進氣 H₂S = 10,000 ppm, COS = 2,000 ppm, CO = 30%, H₂ = 20%, N₂ balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹, 脫硫溫度為 500°C;再生氣體為空氣,再生溫度之選用主要根據程溫脱附實驗,可知再生溫度至少需 420°C才能將吸收劑中的硫份脱出,為了更加確保硫份能完全脫出,選用 500°C 作為再生之溫度進行五次脫硫—再生循環之測試。其結果如 Fig. 5 所示。S1~S5 代表第一次脫硫~ 第五次脫硫,由圖中我們發現新鮮之吸收劑可完全被利用,而吸收劑經由五次脫硫再生循環後,其活性僅有些許衰退的現象,根據文獻記載指出,我們可以預期吸收劑效率上升到某一程度後應會緩慢衰退【柯子星,2005】。

推測活性衰退之原因為(1)由於不斷的進行脫硫—再生循環使得吸收劑進行 劇烈的吸放熱反應,造成吸收劑表面燒結,使表面孔隙因而封閉減少,促使外部 反應氣體難以順利進入吸收劑內部反應,以致造成再生後之吸收劑脫硫效能降 低。(2)通入空氣進行再生時,氧氣不只將 FeS 氧化為 Fe₂O₃,也會將 FeS 氧化 為穩定的 FeSO₄,大部分的 FeSO₄ 於再生過程中會氧化為 Fe₂O₃,少部分沒有繼 續氧化的 FeS 及 FeSO4 會經過多次的再生反應後逐漸累積硫份,使吸收劑之吸 收容量減少。

Fig.6 為脫硫-再生循環試驗中五次再生的部分,將脫硫後之 10% Fe2O3/SiO2

5

吸收劑在 500℃條件下通入空氣,使脫硫後的金屬硫化物能回復為可再利用的金 屬氧化物,當 SO2濃度小於 50 ppm 即可進行下一次脫硫。R1~R5 代表第一次 再生~第五次再生,使用空氣進行再生主要的原因為縮短其再生的時間,由實驗 結果顯示第一次至第五次再生皆於 15 分鐘內即可完成。

4、硫回收率

為了解脫硫後吸收劑內實際含硫量與理論值的差異,我們以元素分析儀(EA) 來分析脫硫後吸收劑內元素硫含量,同時為確保量測正確性,每一試樣皆作重複 樣品分析。Table2 為吸收劑於脫硫-再生循環後之元素分析儀(EA)分析結果,可 以發現脫硫後 10% Fe₂O₃/SiO₂ 吸收劑之硫含量,與實驗貫穿時間計算值差異不 大。但隨著再生次數的增加,硫份累積有逐漸增多的情形,而由脫硫及再生後吸 收劑中的碳含量發現並無增加的情形,顯示進氣一氧化碳濃度為 30%時,未有碳 化鐵之生成。由貫穿時間換算之每 100 g 吸收劑之實驗含硫量(Capacity)計算如下 所示:

$$C (g \text{ S/100g sorbent}) = \frac{F \times t \times 32}{W (1 - U) + W \times U \times A} \times 100 \%$$
(4-6)

式中, C: Capacity(g S/100g sulfurated sorbent)

- F:進氣硫之莫耳流率(mol/min)
- *t*:貫穿時間(min)
- 32: 硫原子量(g/mol)
- W:吸收劑填充量(g)
- U:金屬氧化物含量(%)
- A:重量增加比例(金屬硫化物/金屬氧化物)

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系

中華民國環境工程學會 2007空氣污染控制技術研討會以Fe₂O₃/SiO₂吸收劑高溫去除硫化氫及硫化羰之研究

incluted and 5	unulued solutions		
Sorbent	Carbon content ^a $\binom{9}{2}$	Sulfur content ^a $\binom{9}{6}$	Experimental sulfur
	(70)	(70)	content (%)
Fresh	0.14 ± 0.09	0.41 ± 0.01	
500°C S1	0.19 ± 0.01	3.98 ± 0.03	3.94 ± 0.05
500°C R1	0.14 ± 0.01	0.40 ± 0.08	
500°C S2	0.15 ± 0.02	3.91 ± 0.07	3.76 ± 0.02
500°C S3	0.17 ± 0.04	4.02 ± 0.10	3.77 ± 0.02
500°C R3	0.15 ± 0.01	0.50 ± 0.04	
500°C S5	0.17 ± 0.01	3.99 ± 0.17	3.84 ± 0.03
500°C R5	0.10 ± 0.02	0.54 ± 0.12	
-			

Table2 Comparison of elemental analysis and experimental sulfur contents for regenerated and sulfurated sorbents

a : analysis by EA (element analysis)

5、XRD 分析

為了解吸收劑脫硫-再生循環對晶相之影響,我們將新鮮、第一次再生、第 三次再生、第五次再生以及第一次脫硫、第三次脫硫、第五次脫硫之吸收劑送往 成功大學貴重儀器中心X射線繞射分析儀進行分析,並經由 POWDER DIFFRATIONFILE 資料庫【2004】進行比對。其結果如 Fig. 7 所示。由 Fig. 7 (a) 可發現再生後之吸收劑活性金屬可以回復為原來之 Fe2O3 晶相,但有些微 FeS 殘 留其中,在載體 SiO2部分發現其晶相為無定型的晶相。而由 Fig.7 (a)可以發現 新鮮的吸收劑與再生完後之吸收劑雖然皆為 Fe2O3 晶相,但新鮮之吸收劑晶相形 狀為菱形六面體,經高溫再生原子重新排列後形狀轉變為立方體。由 Fig.7 (b) 可發現脫硫後之吸收劑,其金屬硫化物之特性峰隨著脱硫次數的增加其晶相有更 明顯的趨勢,其中以第五次脫硫最為明顯。

(a)

(b)

6、操作参數測試

(1) 不同操作溫度對同時去除硫化氫及硫化羰之影響

以10% Fe₂O₃/SiO₂為吸收劑分別於溫度400°C、500°C、600°C、700°C之脫 硫試驗,發現在500°C與600°C其脫硫效果差異不大。其貫穿點前之硫化氫出口 濃度隨脫硫溫度上升而增加,探究其原因可能是隨著溫度持續升高,使Fe₂O₃於 極度還原氣氛下被還原為沒有活性之鐵氧化物,而降低吸收劑的脫硫能力。於 Fig. 8 中可發現溫度為500~700°C時,皆是硫化氫貫穿後硫化羰才貫穿,而溫度 400°C時則是硫化羰先貫穿。此現象可由Fig.9 來做說明,由於 COS 濃度為 0.2%, 若以之前條件進行實驗其貫穿時間較長,且由之前操作參數發現空間流速於 3,000 ~18,000 mL·hr⁻¹·g⁻¹並不會影響利用率,故改用空間流速 15,000 mL·hr⁻¹·g⁻¹進行實 驗,發現溫度400°C時10% Fe₂O₃/SiO₂ 吸收劑利用率僅有 0.05%,較不易吸收硫化

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系

羰, 而溫度 500~700℃時, 利用率約 80%。

Fig. 8 Breakthrough curves for H_2S and COS removal at various temperatures using 10%Fe₂O₃/SiO₂ (Inlet $H_2S = 10,000$ ppm, COS = 2,000 ppm, CO = 30%, $H_2 = 20\%$, N_2 balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹)

Fig. 9 Breakthrough curves for COS removal at various temperatures using 10%Fe₂O₃/SiO₂ (Inlet COS = 2,000 ppm, CO = 30%, N₂ balance, WHSV = 15,000 mL·hr⁻¹·g⁻¹, sorbent : 1g)

(2) 一氧化碳濃度對同時去除硫化氫及硫化羰之影響

一氧化碳濃度的增加可使貫穿時間增長(Table3),此原因可以藉由Water-shift reaction 來作解釋。Water-shift reaction 反應表示如下:

$$CO + H_2 O \to H_2 + CO_2 \tag{4-7}$$

$$3Fe_2O_3 + (H_2, CO) \rightarrow 2Fe_3O_4 + (H_2O, CO_2)$$
 (4-8)

$$Fe_{3}O_{4} + 3H_{2}S + (H_{2}, CO) \rightarrow 3FeS + 3H_{2}O + (H_{2}O, CO_{2})$$
 (4-9)

由反應式(4-9)可知反應中金屬氧化物中之氧會和氫反應生成水,當一氧化碳濃度 升高的時候反應式(4-7)會往右邊進行,可以使硫化反應產生之 H₂O 被消耗,故 依照勒沙特列原理,H₂O 的消耗可以使脫硫反應往右進行,即可以促進反應的進 行使硫化氫之貫穿時間延後(Fig. 10 (a))。

但我們發現當 CO 濃度高達 45%時, 脫硫效果反而降低了,從 Table3 的 EA 元素分析發現,在 CO 濃度為 45%條件下脫硫,會產生碳化鐵,使得 C 含量比 其它條件下之 C 含量多 50%以上,因而導致脫硫效果變差。

然而,一氧化碳濃度的增加會使得硫化羰之貫穿時間縮短,此原因可藉由反應式(4-10)來做解釋,由式中可知一氧化碳濃度的增加會與反應所添加的硫化氫反應,使得硫化氫被消耗,進而使反應往左進行產生硫化羰,因而縮短了硫化羰之貫穿時間(Fig.10 (b))。由 Fig. 11 得知當 CO 濃度為 0%時,其硫化羰幾乎全部轉化為硫化氫,當反應達平衡時硫化氫之濃度約為 11,900 ppm。而由(4-10)計算可得 2,000 ppm 硫化羰與 20%氫氣反應可得 1,992 ppm 之硫化氫,再加上原有之 1% H₂S 得反應達平衡時約有 1,1992 ppm 之 H₂S,實驗結果與熱力學計算結果相符合。

$$COS + H_2 \leftrightarrow H_2 S + CO \qquad K_{500} = 16.95 \tag{4-10}$$

Table3 Sulfur sorption capacity of the 10%Fe₂O₃/SiO₂ for H₂S and COS removal at various concentrations of CO

Concentration Carbon content ^a		Experimental	experimental Experimental sorption		sorbent
of CO (%)	(%)	breakthrough time (min)	capacity (g-S/100g-sorbent)	breakthrough time (min)	utilization (%)
0	0.15 ± 0.00	45	3.8	51	88
15	0.15 ± 0.01	47	3.9	51	92
30	0.19 ± 0.01	51	4.3	51	100
45	0.31 ± 0.01	46	3.8	51	90

a : analysis by EA (element analysis)

10

Fig.11 Breakthrough curves for H_2S and COS removal without CO using 10%Fe₂O₃/SiO₂ (Inlet $H_2S = 10,000$ ppm, COS = 2,000 ppm, $H_2 = 20\%$, no CO, N₂ balance, Temperature = 500°C, WHSV = 3,000 mL·hr⁻¹·g⁻¹)

(3) 氫氣濃度對同時去除硫化氫及硫化羰之影響

Fig. 12(a)為不同濃度的氫氫於 500 C 脫硫時硫化氫之貫穿曲線,氫氣濃度 的增加會使硫化氫之貫穿時間減短 (Fig. 12(a)),原因如同一氧化碳一樣可由 Water-shift reaction 來作解釋,當氫氣濃度高的時候,依照勒沙特列原理反應式 (4-7)會往左進行,而使硫化反應產生之 H₂O 無法被消耗,且氫氣的增加會使環 境更加成為還原態,使 Fe₂O₃ 被還原為活性較差的鐵氧化物,這些因素都使得脫 硫效果降低。

然而,氫氣濃度的增加會使得硫化羰之貫穿時間增加,此原因可藉由反應式 (4-10)來作解釋。由上述反應可知氫氣濃度的增加會使反應所添加的硫化羰被消 耗,因而增加了硫化羰之貫穿時間(Fig. 12(b)),而當 H2 濃度為 10%及 20%時, 其貫穿時間差異不大。實驗發現碳含量不受氫氣濃度之影響,顯示碳化鐵不受因 氫氣濃度變化而生成。

從 Fig. 12 可發現當氫氣濃度為 0%時,硫化羰較硫化氫早貫穿,此原因可藉 由反應式(4-10)來作解釋。在沒有氫氣的條件下,其反應式朝左,使硫化羰濃度 增加,導致貫穿時間較硫化氫早。

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系

Fig. 12 Breakthrough curves for H_2S and COS removal at various H_2 concentrations using 10%Fe₂O₃/SiO₂ (Inlet $H_2S = 10,000$ ppm, COS = 2,000 ppm, CO = 30%, N₂ balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹)

(4) 硫化氫及硫化羰濃度對同時去除硫化氫及硫化羰之影響

Fig. 13(a)及Fig. 13(b)分別為不同濃度的硫化氫於溫度 500℃脫硫時硫 化氫及硫化羰之貫穿曲線。結果發現硫化氫濃度越高,並未影響吸收劑之利用 率,且可發現其貫穿時間與硫化氫和硫化羰濃度之和成比例關係。

Fig. 14(a)及Fig. 14(b)分別為不同濃度的硫化羰於 500℃脫硫時,硫化 氫及硫化羰之貫穿曲線,結果發現硫化羰濃度並未使吸收劑利用率降低,且可發 現貫穿時間與硫化氫和硫化羰濃度之和成比例關係。

Fig. 13 Breakthrough curves for H₂S and COS removal at various H₂S concentrations using 10%Fe₂O₃/SiO₂ (Inlet COS = 2,000 ppm, H₂ = 20%, CO = 30%, N₂ balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹)

Fig. 14 Breakthrough curves for H_2S and COS removal at various COS concentrations using $10\%Fe_2O_3/SiO_2$ (Inlet $H_2S = 10,000$ ppm, $H_2 = 20\%$, CO = 30%, N₂ balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹)

(5) 不同空間流速對同時去除硫化氫及硫化羰之影響

Fig. 15 為不同空間流速的條件下於溫度 500℃以 10% Fe₂O₃/SiO₂ 同時去除硫 化氫及硫化羰之貫穿曲線。由圖中我們可以發現空間流速在 3,000~18,000 mL·hr⁻¹·g⁻¹之間時,脫硫容量受空間流速之影響並不顯著,表示外質傳效應在此 空間流速範圍內可以忽略。

Fig. 15 Breakthrough curves for H_2S and COS removal at various weight hourly space velocities (WHSV) using Fe₂O₃/SiO₂ (Inlet $H_2S = 10,000$ ppm, COS = 2,000 ppm, H₂ = 20%, CO = 30%, N₂ balance)

7、熱重分析

(1) 還原氣氛下之熱重分析

Fig. 16 為 10% Fe₂O₃/SiO₂ 吸收劑通入 15% H₂ in He 還原氣氛下之熱重分析 圖。在溫度 420℃及溫度 540℃皆有明顯的重量損失。在溫度 420℃之重量損失 應為 Fe₂O₃ 轉變為 Fe₃O₄ 【Munteanu, 1997】, 而溫度 540℃的重量損失則是由於 Fe₃O₄ 轉變為 FeO 【Pineau, 2005】。而由式(4-11)及(4-12)經計算後可得理論上

重量損失應約為 10%,但由於吸收劑中只含有 10%之 Fe₂O₃,所以理論上重量損 失為 1%。從 Fig. 16 中之 TG(%)可以觀察到,當反應從開始到溫度 800℃重量損 失後剩下約為原本的 98.13%,而由於本實驗所使用的吸收劑是以 SiO₂ 為載體, 而載體於 800℃重量損失後剩下約為原本的 98.98%,因此必須將載體於同溫度下 之重量扣除,得其溫度 800℃之重量損失為 0.86%,此結果與理論近乎符合。

40

20

0.

-20

DTG(µg/min)

50

-100

-150

DTA (μ V)

 $3Fe_2O_3 + H_2 \rightarrow 2Fe_3O_4 + H_2O$ $Fe_3O_4 + H_2 \rightarrow 3FeO + H_2O$

(4-11)

(4-12)

100.0

99.5 I.C (%)

800

DTA (μV)

TG (%) DIG (µg/min)

Fig. 16 Temperature-programmed reduction profiles of 10%Fe₂O₃/SiO₂ (after sulfuration at 500°C) with 15% H₂

Fig. 17 Temperature-programmed reduction profiles of SiO₂ with 15% H₂ in Ar

400

Temperature (°C)

600

(2) 氧化氣氛下之熱重分析

Fig. 18 為將經過 500°C (H₂S = 10,000 ppm, COS = 2,000 ppm, CO = 30%, H₂ = 20%, N₂ Balance, WHSV = 3,000 mL·hr⁻¹·g⁻¹)脫硫過後之 10% Fe₂O₃/SiO₂ 吸 收劑通入 1% O₂ in N₂ 的氧化氣氛之熱重分析,圖中發現脫硫過後的吸收劑於 300°C 開始重量逐漸增加,直到 350°C 時已增加了約 1.5%,之後就開始逐漸下降, 直到 800℃重量減少為 2.4%。

由於再生反應 2FeS + $3.5O_2 \rightarrow Fe_2O_3 + 2SO_2$ 的結果顯示最終吸收劑的重量應 會減少 9.1%,同樣的由於 10% Fe_2O_3/SiO_2 吸收劑只含有 10.8%之 FeS,因此理論 上重量會減少 0.98%。由 Fig. 18 中我們可以觀察到反應結束時比反應前少 2.4%, 而由於本實驗所使用的吸收劑是以 SiO_2 為載體,由 Fig. 19 中得知載體於溫度 800°C 重量損約為 1.1%,因此必須將載體於同溫度下之重量扣除,得其溫度 800°C 之重量損失為 1.3%,可能脫硫完後吸收劑中 Fe 與 S 之比例並非為 1,而是小於 1 導致其差異。而 300°C 的重量增加,推測可能由於氧化氣氛的關係使得部分 FeS 被氧化為 FeSO₄,使得重量增加【張翰青, 2005】。

由此推測再生反應可能是 FeS 先部份被氧化為 FeSO4, 再轉為 Fe₂O₃, 而殘 留的 FeSO4 由於較為安定使得經過多次循環脫硫後會使吸收劑的硫份逐漸累積。

Fig. 18 Temperature-programmed oxidation profiles of 10%Fe₂O₃/SiO₂ (fresh) with 1% O₂ in N₂

8、吸收劑表面分析

(1) SEM-EDS 分析

Fig. 19 Temperature-programmed oxidation profiles of SiO_2 with 1% O_2 in N_2

Fig. 20~Fig. 23 分別為 10% Fe₂O₃/SiO₂ (fresh)、10% FeS/SiO₂ (500°C S1)、 10% Fe₂O₃/SiO₂ (R1)、10% Fe₂O₃/SiO₂ (R3)之 SEM-EDS 分析圖譜,其元素分析 測值則整理列於 Table4 中。比較 Fig. 20 及 Fig. 21 可以發現,經 500°C 脫硫後之 吸收劑,表面硫的比例較新鮮吸收劑明顯提升,證明吸收劑確實將硫份吸收於吸 收劑內。由 Fig. 22 至 Fig. 23 及 Table 4 可以發現,經再生後之吸收劑依然有微 量硫元素存在,且隨著再生次數之曾加硫份累積之現象更加明顯。

Fig. 22 EDS spectra for 10%Fe₂O₃/SiO₂ (R1) at 5k

 $\begin{array}{c} & & & & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 11 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & & \\ \hline 12 & & & & & \\ 12 & & & & \\ 12 & & & & & \\ 12 & & & & & \\ 12 & & & &$

中華民國環境工程學會 2007空氣污染控制技術研討會以 Fe₂O₃/SiO₂ 吸收劑高溫去除硫化氫及硫化羰之研究

Element –		Weight(%)				
	fresh	S1	R1	R3	R5	
0	44.1	48.5	48.2	51.3	48.7	
Si	44.3	39.4	40.6	38.7	40.2	
S		4.4		0.4	0.4	
Fe	11.6	7.8	11.2	9.6	10.7	

Table4 EDS element analysis

(2) BET 表面積與孔洞特性

Table5 為 10% Fe₂O₃/SiO₂ 反應前後五種不同狀態之 BET 表面積及總孔洞特 性。於一次脫硫時 Fe₂O₃ 與 H₂S 反應, Fe₂O₃ 晶格中的 O 會被 S 取代,氧離子的 半徑與硫離子的半徑分別為 1.4 Å 及 1.84Å,會導致吸收劑膨脹,使得總孔洞體 積及表面積值皆有明顯下降,而經過一次再生後表面積僅有些微下降,但再生五 次後之表面積大幅的減少。造成此現象原因可能是因為劇烈之吸放熱反應,使小 孔洞因高溫燒結而減少,使得孔洞直徑增大,同時因此使 BET 表面積及總孔洞 體積減少。

Fig. 24 為 10% Fe₂O₃/SiO₂ 反應前後五種不同狀態之吸附孔徑分佈圖,從圖 中可以發現經過新鮮及脫硫再生反應後之吸收劑孔徑主要分佈在 15~30 nm 之 中孔洞(mesopore)為主。

Fig. 25 為 10% Fe₂O₃/SiO₂ 反應前後五種不同狀態之等溫吸附曲線圖。由圖 中可以發現此等溫吸附曲線是屬於 Type IV,為具有多孔性之粉體材料,但吸收 劑經過脫硫再生後,氮氣吸附量僅有些微減少之趨勢。

Sorbent	BET surface	Total pore	Average pore
Sorociit	area (cm $^{3}/g$)	volumn (cm ³ /g)	diameter (nm)
Fresh	217	0.81	22.2
S1	180	0.68	23.7
R1	205	0.75	23.3
R3	212	0.80	22.0
R5	184	0.77	35.6

Table5 BET surface area and total pore volume for various sorbents

Fig.24 Pore diameter distribution for 10% Fe₂O₃/SiO₂

Fig. 25 Isotherm adsorption plot for 10% Fe₂O₃/SiO₂

9、脱硫反應動力模式模擬

(1) 第一型之衰退模式

在反應動力研究部分為了避免中間產物 COS 的產生,因此不加入 CO 氣體。 Fig. 26 為在不同溫度點硫化氫貫穿曲線圖。Fig. 27 為將硫化氫進流濃度除以 Fig. 26 之硫化氫出口濃度再取二次對數後對時間作圖,其中橫座標為時間。Fig. 27 迴歸所得之不同溫度線性關係都相當不錯, R^2 值可達 0.99 以上。迴歸之結果 如 Table 6 所示,可求出不同溫度下之衰退常數 k_d 及速率常數 k_0 。Fig. 28 為各溫 度下,依 Arrhenius equation 將求出之 k_0 取對數後對 1/T 作圖所繪出的圖形,求 出活化能 $E_a = 103$ kJ/mol,碰撞因子 A = 1.4×10^{17} 。

using 10%Fe₂O₃/SiO₂ (Inlet H₂S = 10,000 ppm, COS = 2,000 ppm, H₂ = 20%, N₂ = balance)

Fig. 27 Regression fittings for the Type I Deactivation Model

17

中華民國環境工程學會 2007空氣污染控制技術研討會以 Fe₂O₃/SiO₂ 吸收劑高溫去除硫化氫及硫化羰之研究

Table 6 Results of the Type I Deactivation Model						
Deactivation Model Type I						
Inlet temp (K) 673 773 873 973						
$k_d (\min^{-1})$	0.32	0.33	0.37	0.40		
$\ln(k_0 W/Q_0)$ 15.1 16.8 18.2 20.0						
$k_0 (\mathrm{cm}^3/\mathrm{min}\cdot\mathrm{g})$	1.66×10 ⁹	9.94×10 ⁹	4.71×10^{10}	3.23×10^{11}		

 $W = 2 g, Q_0 = 100 mL/min$

Fig. 28 Arrhheinus equation fitting for the Type I Deactivation Model (2) 第二型之衰退模式

由於第二型衰退模式假設衰退常數與硫化氫進流濃度為一階相關,因此推導 出來之數學表示式較複雜,無法藉由二邊取對數而將數學式線性化,因此我們直 接用統計繪圖軟體 SigmaPlot 將 Fig.26 之數值點作迴歸,其結果如 Fig.29 所示。 由圖中我們發現實驗數值與貫穿曲線方程式符合性良好,R²皆可達 0.99 以上。 迴歸之結果如 Table7 所示,可求出不同溫度下之衰退常數 kd 及速率常數 k0。

Fig. 30 為各溫度下,依 Arrhenius equation 將 Fig. 30 求出之 k_0 取對數後對 1/T 作圖所繪出的圖形,求出活化能 $E_a = 65.5$ kJ/mol,碰撞因子 A = 4.3×10^{14} 。

由不同 H₂S 濃度之貫穿曲線可得 H₂S 濃度為 0.5%~2%時,貫穿曲線斜率分 別為 1325、1930、2383 及 3056,顯示活性衰退約與硫化氫濃度的 0.6 次方成正 比且根據之前的文獻結果顯示一般氧化鐵與硫化氫之非催化氣固反應之活化能 為 50~100 kJ/mol 【Ranada, 1981; Focht, 1989; Pineda, 1995; Tamhankar, 1981】, 故推測吸收劑之活性衰退與硫化氫成零階至一階相關。

Fig. 29 Regression fittings for the Type II Deactivation Model

of the Type II Dea	activation Model		
Dead	ctivation Model	Гуре 🏾	
673	773	873	973
0.34	0.32	0.37	0.39
16.3	16.6	18.1	19.5
5.20×10 ⁹	8.63×10 ⁹	4.44×10^{10}	1.87×10^{11}
00 mL/min			
27 26 25 25 24 23 22 22 21	•	$lnk = 33.7-7880T^{-1}$ R ² =0.956 Ea = 65.5 kJ/mol A = 4.3x10^{14}	
1.0 1.1	1.2 1.3 $T^{-1} \mathbf{x} 10^3 (K^{-1})$	1.4 1.5 1.6	
	$\frac{1}{2} = \frac{2}{10} = \frac{2}{10} = \frac{2}{10} = \frac{1}{10} =$	$\frac{1}{100} \frac{1}{100} \frac{1}$	$\frac{1}{10} \frac{1}{11} \frac{1}{12} \frac{1}{13} \frac{1}{14} \frac{1}{15} \frac{1}{15} \frac{1}{16} \frac{1}{15} \frac{1}{15} \frac{1}{15} \frac{1}{16} \frac{1}{15} \frac$

Fig. 30 Arrhheinus equation fitting for the Type II Deactivation Model

五、結論

以自製具除塵潛力之10%Fe₂O₃/SiO₂吸收劑高溫去除硫化氫及硫化羰,我們將結果歸納為下列幾點:

 本研究以三種不同表面積之 SiO₂ 為載體,負載氧化鐵之吸收劑於高溫下去 除硫化氫,研究結果顯示以 Fe₂O₃/SiO₂ (S.A = 251 m²/g)吸收劑的效果較佳,

其利用率約為8成,其次為 Fe_2O_3/SiO_2 (S.A = 161 m²/g)吸收劑, Fe_2O_3/SiO_2 (S.A = 0.25 m²/g)吸收劑吸收效果較差。

- 硬度測試之結果可得知載體 SiO₂ (S.A = 161 m²/g)之重量損失百分比(0.07%) 較 SiO₂ (S.A = 0.25 m²/g)之重量損失百分比(0.9%)小,顯示其硬度較硬。而 由廠商所提供之載體(未經煅燒)資料顯示 SiO₂ (S.A = 161 m²/g)之破碎強度 18.4 lbs 較 SiO₂ (S.A = 251 m²/g) 13.4 lbs 大,故後續實驗皆採用 S.A. = 161 m²/g 之 SiO₂ 為載體。
- 3. 由反應前後 10% Fe₂O₃/SiO₂ (S.A = 161 m²/g) 外觀顏色可發現,在與硫化氫反應前,吸收劑外觀是呈現橘紅色,而與硫化氫反應後其外觀顏色呈現暗黑色(dark black),這表示吸收劑內的氧化鐵確實能與硫化氫反應生成硫化鐵,由於硫化鐵是黑色,因此根據此判斷生成物種應是硫化鐵。而單獨去除硫化氫或硫化羰時,反應前後顏色的變化與同時去除時相同。另外,於再生後之吸收劑的外觀顏色呈現與未反應前顏色相同,但顏色比未反應前稍淺。因此研判於再生階段吸收劑可被再生。

参考文獻

- 1. GE Energy, "GE's Gasification & IGCC Technology Update a Clean Coal Solution ", Proceeded in APEC Clean Coal Conference, Lampang, Thailand, February 22-25 (2006).
- Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., "Reactivity and Durability of Iron Oxide High Temperature Desulfurization Sorbents", Energy & Fuels, Vol. 7, pp. 632-638 (1993).
- 柯子星,"以紅壤在高溫下去除煤炭氣化氣中硫化氫之研究",國立成功大 學環境工程研究所,博士論文,(2005)。
- 4. 「POWDER DIFFRATION FILE」, International Center for Diffration Data, "http://cdnet.lib.ncku.edu.tw/doc/pdf.htm" (2004).
- 5. Munteanu G., Ilieva L., Andreeva D., "TPR data regarding the effect of sulfur on the reducibility of γ -Fe₂O₃", Thermochim. Acta 291, Vol. 329, pp. 157-162 (1997).
- 張翰青,"以重金屬廢水污泥產生之鐵氧磁體高溫去除 H2S 之吸收特性", 國立成功大學環境工程研究所,碩士論文,2005。
- 7. Ranade, P.V.; Harrison, D.P., "The variable property grain model applied to the ZnO-H2S reaction", Chem. Eng. Sci., Vol. 36, pp. 1079-1090 (1981).
- Focht, G.D., Ranade, P.V., Harrison, D. P., "High Temperature Desulfurization Using Zinc Ferrite : Solid Structural Property Changes", Chem Eng Sci, Vol. 44, No. 2, pp. 215-224 (1989).
- Pineda, M., Fierro, J.L.G., Palacios, J.M., "Kinetic Behaviour and Reactivity of Zinc Ferrites for Hot Gas Desulphurization", Journal of Materials Science, Vol. 30, pp. 6171-6178 (1995).
- Tamhankar, S.S.; Hasatani, M.; Wen, C.Y., "Kinetic studies on the reactions involved in the hot gas desulfurization", Chem. Eng. Sci., Vol. 36, pp.1181-1191 (1981).

中華民國九十六年十一月二十三、二十四日 高雄市高雄大學土木與環境工程學系